NOUN
  • Definition - A scalar, \lambda, such that there exists a non-zero vector x (a corresponding eigenvector) for which the image of x under a given linear operator \mathrm{A} is equal to the image of x under multiplication by \lambda; i.e. \mathrm{A} x = \lambda x.
  • Example - The eigenvalues \lambda of a square transformation matrix \mathrm{M} may be found by solving \det(\mathrm{M} - \lambda\mathrm{I}) = 0.
Words in your word
11 Letter Words
eigenvalues 15
10 Letter Words
eigenvalue 14 evangelise 14
4 Letter Words
gave 8 give 8 guvs 8 vagi 8 vang 8 vega 8 viga 8 vigs 8 vugs 8 aves 7 eave 7 even 7 eves 7 evil 7 lave 7 lavs 7 leva 7 levs 7 live 7 luvs 7 nave 7 navs 7 neve 7 nevi 7 save 7 ulva 7 uvea 7 vail 7 vain 7 vale 7 vane 7 vans 7 vase 7 vaus 7 veal 7 vees 7 veil 7 vein 7 vela 7 vena 7 vial 7 vies 7 vile 7 vina 7 vine 7 vins 7 visa 7 vise 7 vlei 7 vuln 7
3 Letter Words
guv 7 veg 7 vig 7 vug 7 ave 6 eve 6 lav 6 lev 6 luv 6 nav 6 sev 6 van 6 vas 6 vau 6 vee 6 via 6 vie 6 vin 6 vis 6 age 4 ags 4 eng 4 gae 4 gal 4 gan 4 gas 4 gee 4 gel 4 gen 4 gie 4 gin 4 gis 4 gnu 4 gul 4 gun 4 lag 4 leg 4 lug 4 nag 4 neg 4 nug 4 sag 4 seg 4 sig 4 ail 3 ain 3 ais 3 ale 3 als 3 ane 3
2 Letter Words
ag 3 gi 3 ae 2 ai 2 al 2 an 2 as 2 el 2 en 2 es 2 in 2 is 2 la 2 li 2 na 2 ne 2 nu 2 si 2 un 2 us 2
Here are some of our popular Scrabble ® lists